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Delft Wind-Assist Research

» Aero/Hydro modeling based on

B -pPO* 0 experiments and full scale RANS
N S = = e simulations
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‘‘‘‘‘‘‘‘‘ e & e R \. Large database of hulls and appendages
Delft

» Aero/Hydro coupling with 4 degree-of-
freedom solver

Wind-Assist

* Flettner rotors, Dynarigs, Wingsails,
user-provided CL/CD curves ~~
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Assessing the Promise of Wind Assist

1. Vessel Model 2. Route-specific 3. Economic /
Weather Conditions Environmental
L Evaluation
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Lessons learned: Case Study’

» DAMEN Combi-freighter on a Baltic sea route é HL :JAE:
- 5000t — small bunkering requirement - —
- Light winds in the Baltic region

» North Sea Case — in progress JL % r.’ii‘—ﬂ—l %
- 19500t vessel s Ld Al L

- Favorable wind conditions A L1 L 4 1 L H

BTE_

1. Case study: Wind-assisted ship propulsion performance prediction, routing, and economic modelling. /
van der Kolk, Nico; Bordogna, Giovanni; Mason, J.C.; Desprairies, P.; Vrijdag, Arthur.

International Conference Power & Propulsion Alternatives for Ships. The Royal Institution of Naval Architects, 2019. /\
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Design Space Exploration
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Delft Wind Assist Model

Interaction effects between
the hull and the Flettner rotors

Interaction effects
between Flettner rotors

Off-design inflow

Helm/Yaw balance:

limits on rudder angle r\,/

for maneuverability Heeling force
and lightly-loaded

\ * Driving force
operating conditions/ R | e
Sideforce Leeway angN
_ ' ' Heading
Resistance in waves is
i The hull operates at a
influenced by constant heel
leeway angle necessary to
and leeway angles

Forward speed

generate the sideforce to

keep the ship on track /-\
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Delft Wind Assist Model

Interaction effects between
the hull and the Flettner rotors

Interaction effects
between Flettner rotors

Off-design inflow
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limits on rudder angle r\,/
for maneuverability Heeling force
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Helm Balance

» The hydrodynamic centroid is far ahead
of the vessel (unappended hull).
e Corrective action by the rudder is required.

Leeway angle: B
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The Munk Moment

e Linear, destabilizing reaction for body in oblique flow

e Results in a couple, a pure moment

- In principle (potential flow) there is no
sway force

» Some flow separation along aftbody
reduces the underpressure
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The Munk Moment

 Destabilizing reaction for body in oblique flow

Leeway angle: B
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Helm Balance

» Corrective action by the rudder is required.
» Resistance penalty
» Maneuvering limit

Leeway angle: B
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Delft Wind Assist Model

Interaction effects between
the hull and the Flettner rotors
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The Flettner rotor velocity ratio

— —
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» Velocity ratio=Rotor
tangential velocity /
Freestream velocity

» For a given FR type, lift
and drag depends only
on the velocity ratio

_CL i
_CD i
O 05 1 15 2 25 3 35 4 45 5
Velocity ratio
Bordogna et al. (2019), J Wind Eng Ind Aerodyn, 188, pp 19-29
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Lift & Drag Coefficients
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Optimal velocity ratio (theoretically)

Upwind sailing
o 11 —— o
c 10 ({—CL
8 9-—cCD
= g- = CL/CD
8 6F e Best for upwind sailing
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E 1 Best for downwmd sailing
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Optimal real-life velocity ratio

Case Study
e Two 4x24 Flettner rotors
e FR distance=5 diameters

e Interaction effects between the
two rotors are taken into account
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Optimal real-life velocity ratio

Effect of the velocity ratio on the flow
Vel.Ratio=0 Vel.Ratio=1 Vel.Ratio=2
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» Lower the velocity ratio, larger the flow speed reduction

45 3 45 6 75 9 105 12 135 15
x/D

 Larger the velocity ratio, larger the flow deflection N\
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Optimal real-life velocity ratio
upwind

2 1

\90°
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180° downwind — e Ratio

Vel.Ratio
Fletter rotor 2 Fletter rotor 1 —

2 BLUZ
TUDelft Challenge the future 18 FORUM




Conclusions on interaction effects

» Interaction effects influence operation of Flettner rotors to
achieve optimal ship performance

» Interaction generally detrimental but adjusting the velocity ratio
mitigate this effect

» As for sailing yachts, a proper “trimming” of Flettner rotor is
essential

7~ N\

%
TUDelft Challenge the future 19

'BLUZ=
FORUM




Delft Wind-Assist model

Future next steps

» Model currently used to predict fuel savings of various ship designs

» Ongoing collaboration with Tyndall Centre and UCL on North Sea
case study

e Work on the Delft Wind-Assist model will be continued in the form of
a consultancy business
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